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Abstract

In this report, the developments in Numerical Relativity before and after the moving
puncture breakthrough are reviewed. The moving puncture method is based on previous
theories including the 3+1 formalism, the ADM equations, and the BSSN formulation. Its
main application is in the field of gravitational wave astronomy, where the numerical predic-
tions of the waveforms are used to identify the detected gravitational waves.

1 Introduction

In General Relativity (GR), most of the astrophysical systems of interest do not possess the
necessary symmetries for analytic solutions to exist. Perturbation theory is one alternative ap-
proach, but as the name suggests, it only works if the system is marginally different from a
system with a known solution. Another possibility is to use numerical methods, which might
be the only valid approach in more general situations. The importance of Numerical Relativ-
ity (NR) is seen in the study of the merger of two black holes (BHs), or binary black hole
(BBH) coalescence. Such events were believed to be sources of extremely energetic gravitational
waves, which experiments such as LIGO were hoping to detect. However, unlike the Newto-
nian two-body problem where an analytic solution exists, in GR, the two-body problem is not
straightforward. Firstly, because of gravitational wave (GW) emission, the energy of the system
dissipates. Secondly, there are no point masses in GR, and the elementary objects are BHs
which necessitates the consideration of tidal effects, singularities, etc. Finally, the simple New-
tonian equation of motion is replaced by the Einstein Field Equations (EFEs) - a set of coupled,
non-linear partial differential equations (PDEs).

The breakthrough came in 2005, when the successful simulation of the merger was finally carried
out using two methods: Pretorius’ generalised harmonic formulation and the so-called moving
puncture technique used by the Goddard and Brownsville groups. The waveform extracted
from the simulation of the merger was a key factor that contributed to the identification of
the detected gravitational waves announced on 11 February, 2016, which was a triumph in the
verification of Einstein’s theory of General Relativity formulated a century ago.

In Section 2, we will introduce the 3+1 space-time split of the EFEs, namely the Arnowitt-Deser-
Misner (ADM) equations and the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism. In
Section 3, we will discuss how to represent and evolve BHs on computers, focusing on the moving
puncture approach. Section 4 gives a brief overview of GWs and their relevance to NR. Finally
a brief summary will be given in Section 5.
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2 The 3+1 formalism

The biggest task of NR is to solve the EFEs,

Gαβ + Λgαβ ≡ Rαβ −
1

2
gαβR+ Λgαβ =

8πG

c4
Tαβ, (1)

where gαβ is the metric of the four-dimensional manifold, R is the Ricci scalar, Rαβ = Rµαµβ
is the Ricci tensor, Tµν is the energy-momentum tensor, Gαβ is the Einstein tensor defined by
the equivalence sign, G is the gravitational constant, and c is the speed of light. For simplicity,
for the rest of the article, we will employ the geometrised units G = c = 1, and adopt the
convention ‘− + + +’ as the signature for the metric tensor. We also restrict ourselves to the
case of vacuum and asymptotically flat spacetimes, i.e., Λ = 0 and Tαβ = 0, so the EFEs become
Gαβ = 0. For convenience, we let the Greek indices run over spacetime values (0 to 3), while
the Latin indices only run over the spatial values (1 to 3).

This set of rather innocent-looking equations is in fact quite involved. The Ricci tensor is a
non-linear function of gαβ and its first and second derivatives. Moreover, in this form, space
and time are on equal footing (except for the opposite sign in the metric tensor). This covariant
form comes naturally from differential geometry when we consider space and time under a single
structure which we call spacetime. In practice however, it is useful to view the evolution of
a system in time given an initial spatial setup. For example, we are interested in how the
gravitational field evolves in time given the initial states (positions, velocities, spins, etc.) of
two nearby BHs. This space-time split is known as the 3+1 formalism, and it allows us to cast
our problem as a Cauchy problem.

2.1 The ADM equations

The 3+1 formalism was first formulated in the period from 1920’s to 1950’s, by Darmois [1],
Lichnerowicz [2–4] and Choquet-Bruhat [5, 6]. Then in the late 1950’s and early 1960’s, Dirac
[7, 8], and Arnowitt, Deser and Misner (ADM) [9] readdressed this problem with a Hamiltonian
approach in an attempt to quantise gravity. ADM’s paper became the most frequently cited work
in this aspect, and the canonical 3+1 equations are usually referred to as the ADM equations
[10]. The ADM equations were later reformulated by York Jr. [11, 12].

The derivation of the ADM equations requires introducing a few concepts (see e.g. [13] for
a more detailed derication). Consider a globally hyperbolic manifold M with a Lorentzian
metric gαβ. It can be shown that any globally hyperbolic spacetime can be completely foliated
(i.e. sliced into three-dimensional pieces) so that the sliced hypersurfaces are spacelike (see
e.g. [14]). The hypersurfaces can be identified with the level sets of a parameter t which we
call universal time function (but not necessarily the proper time of any observer). We denote
the hypersurfaces by Σt and call the set of spacelike hypersurfaces a foliation. We now choose
coordinates adapted to the foliation such that x0 = t, and xi are the spatial coordinates in each
hypersurface. Now we define the future-pointing normal n, the lapse function α and the shift
function β as n ≡ − dt

‖dt‖ , α ≡
1

‖dt‖ , and β ≡ (∂t)−αn. One notices that the shift operator β is

tangent to Σt since 〈dt, αn〉 = 1 and 〈dt,∂t〉 = 1. Also, for an observer with 4-velocity n and
proper time τ , we have ∆τ = α∆t, which follows from the definition of n and α (c.f. Figure 1).
At this point, we note that both the lapse and the shift can be chosen freely.
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Figure 1: Two hypersurfaces of a foliation with lapse α and shift vector β shown. Figure
taken from [15].

To be able to cast the problem as a temporally evolving space (spacelike hypersurface), it is
useful to define the projection operator ⊥αµ ≡ δαµ+nαnµ so that the projection of an arbitrary
tensor Tµ1µ2...ν1ν2... is given by

(⊥ T )α1α2...
β1β2... ≡ ⊥α1

µ1⊥α2
µ2 . . .⊥ν1β1⊥ν2β2 . . . Tµ1µ2...ν1ν2.... (2)

In particular, the spatial metric (also called the first fundamental form) is the projection of the
metric to the hypersurface Σt,

γαβ ≡ ⊥µα⊥νβgµν = gαβ + nαnβ = ⊥αβ . (3)

With these definitions, the metric tensor in the adapted coordinate system can be expressed in
terms of α, βj and γij , which defines a unique torsion-free and metric compatible connection
Γijk, and an associated covariant derivative Dγ for an arbitrary spatial tensor. Next, we define
the extrinsic curvature Kαβ ≡ − ⊥ ∇βnα. As is obvious from the definition, it measures the
variation of the normal vector across the hypersurface.

Moreover, for notational convenience, we denote the projections of the energy momentum tensor
by the following

ρ = Tµνn
µnν , jα = −⊥ναTµνnµ, Sαβ = ⊥µα⊥νβTµν , S = γµνSµν . (4)

Finally, with these definitions at hand, we can rewrite the EFEs in the space-time split form by
substituting the three-quantities we have defined above. We obtain the ADM equations:

∂tγij = βm∂mγij + γmj∂iβ
m + γim∂jβ

m − 2αKij , (5)

∂tKij = βm∂mKij +Kmj∂iβ
m +Kim∂jβ

m −DiDjα

+ α(Rij +KKij − 2KimK
m
j) + 4πα[(S − ρ)γij − 2Sij ],

(6)

0 = R+K2 −KmnKmn − 16πρ, (7)

0 = DiK −DmK
m
i + 8πji, (8)

where Rij and R are the Ricci tensor and scalar corresponding to the three-metric.
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2.2 The BSSN formulation

As Nakamura et al. [16] pointed out in 1987, the ADM evolution equations are not stable
under long-term numerical simulations, because they are not well-posed (a system of PDEs is
well-posed if we can define a norm ‖ · ‖ such that ‖u(t, x)‖ ≤ keαt‖u(0, x)‖, with k and α being
constants independent of the initial data, and u being some n-dimensional vector-valued function
of time t and space x).

Nevertheless, all is not lost. The ADM equations are not unique (for example, we can add an
arbitrary multiple of the constraint equations to the evolution equations without changing the
physical solutions), but doing so could change the mathematical properties of the system. By
doing this, the ADM equations can be rewritten in a well-posed form without changing the
physics. Several approaches have been formulated to achieve that, such as the Kidder, Scheel,
and Teukolsky (KST) formulation [17] which used more than 30 evolution equations and 12 free
parameters. Another method is the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism,
which became widely used.

BSSN is a modified version of ADM [18]. It originates from the paper by Nakamura et al. [16] in
1987, and the idea was further developed by Shibata et al. [19, 20] and Baumgarte, Shapiro and
Yo [21–23] in the following decade. This formulation is empirically driven, but some analytic
justification was later provided by Alcubierre et al. [24]. The development of the BSSN method
began with the observation that the error growth could be best suppressed if γ, the determinant
of γij , and K, the trace of Kij , were evolved independently. Several auxiliary variables were
introduced to maintain the stability of the numerical simulation (see e.g. [24] for details of the
auxiliary variables).

The BSSN formulation has been successful at simulating long-term linear GWs [20, 21], nonlinear
GWs [21, 24], rotating black holes [22, 23, 25], etc. Moreover, it was used by the Brownsville
[26] and the Goddard [27] groups in the moving puncture scheme for the successful simulation
of merging binary black holes in 2005.

3 The moving puncture

Black holes contain spacetime singularities, and representing singularities on a computer is not
a trivial task. Two mainstream methods have been used: the excision method first proposed by
Unruh [28] and the puncture method. As suggested by the name, the excision method involves
cutting the black holes from the computational grid. We will not elaborate on this.

The puncture method exploits the interesting topology of GR around a black hole. Modifying
the solution of a spherically symmetric space in an unessential way, Einstein and Rosen [29]
were able to show that regular solutions (i.e. solutions with no singularity) exist if the physical
space is treated as consisting of two identical ‘worldsheets’. Thus, a black hole can be considered
as a ‘bridge’ connecting two worldsheets (see Figure 2), and the ‘bridge’ is called a wormhole.
To be more specific, consider a Schwarzschild geometry with the interior of the event horizon
removed. We then create an identical copy of this space and superimpose them such that their
event horizons coincide. We now require that the two event horizons are in fact the same one;
then the resulting geometry is a wormhole geometry. We distinguish the two ‘identical’ copies by
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inserting an asymmetrical coordinate system. A convenient coordinate system was discovered
by Brill and Lindquist [30] in 1963 in which the three-metric is

γij =

(
1 +

M

2R

)4

δij , (9)

where R is a radial coordinate, and M is the mass of the black hole. To create an asymmetri-
cal coordinate system, Brill and Lindquist noted that this three-metric is invariant under the
transformation r′ = M2/4R, and r′ = R when R = m/2. With this, we can create a global
coordinate variable r′ covering both worldsheets (the worldsheets being denoted by A and B),
by transforming their radial coordinates, RA and RB by:

RA = r′ for r′ ≥ M

2
, RB =

M2

2r′
for r′ ≤ M

2
. (10)

If we label the physical world we are (interested) in by A, then the coordinate r′ =∞ is at the
spatial infinity of the physical world, while r′ = 0 is at the spatial infinity of the mirror world
(see Figure 2). Thus, we have evaded the physical singularity, but at the cost of a coordinate
singularity at r′ = 0 which we call a ‘puncture’. Fortunately, the coordinate singularity can be
restricted to a single scalar field, and this irregular field can be handled numerically [31].

Figure 2: A wormhole joining a two-dimensional space (the upper sheet) and its duplicate
(the lower sheet). In the Brill-Lindquist coordinate, the coordinate singularity, r = 0, is at
the spatial infinity of the duplicate. Figure taken from [30].

Originally, gauge conditions were chosen to make the punctures remain at fixed coordinate posi-
tions. However, in the simulation of inspiralling black holes, for example, the physical distance
decreases with time and the steep gradients undergo substantial dynamics. Moreover, as the
black holes orbit around each other, there is some twisting of the coordinates [31]. Both features
cause numerical instabilities, so having the punctures fixed did not lead to any success.

The breakthrough came in 2005, when Baker et al. at the NASA Goddard Space Flight Center
[27] and Campanelli et al. at the University of Texas at Brownsville [26] independently discovered
that, with some modifications of the gauge conditions used for the fixed punctures, the punctures
can be moved arbitrarily and the resulting numerics was stable. This finally permitted accurate
and long-term evolution of BBH systems. This upgraded version of the ‘fixed puncture method’
with punctures now in motion is referred to as the ‘moving puncture method’.
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4 Gravitational waves

The coalescence of BBH can be divided into three stages: inspiral, merger and ringdown. In
the inspiral stage, two black holes rotate around each other, and as time elapses, they progress
towards each other. In the merger stage, the black holes start to combine (their horizons join)
and form a distorted black hole. In the ringdown stage, the distorted black hole stabilises to a
quiescent black hole after emission of GWs [32]. Probably the most important application of
the BBH simulation is to provide the predicted waveforms for an observer at infinity. As the
computational grid has to be finite, the waveform at infinity must be found by extrapolation
(see [33] for a description of an extrapolation method).

4.1 Propagation of GWs in empty space

Figure 3: Two polarisations of plane GWs viewed along the z-axis. The dots represent the
positions of a set of circularly arranged point masses under the influence of the wave. Each
configuration has a π/2 phase difference to the previous one. Figure taken from [34].

In GR, the EFEs play the role of the Maxwell equations in Electromagnetism, and in an anal-
ogous manner, analytic propagating wave solutions exist in the weak field limit. Unlike elec-
tromagnetic radiations which can have a dipole character, conservation of linear and angular
momentum means the leading order contribution to GWs is quadrupolar [35]. In practice, waves
of interest are generated in strong-field regions, where numerics is needed. We can however study
the form of the wave analytically in the weak field regime corresponding to when the wave has
propagated far enough from the source.

A weak gravitational field refers a region of space that is ‘almost flat’. More precisely, the
metric in such a region takes the form gµν = ηµν + hµν , with |hµν | = O(ε) � 1, where ηµν is
the Minkowski metric, and ε � 1 is a small parameter. In this limit, a linearised theory can
be developed by expanding all terms in the EFEs in powers of ε and keeping only linear order
terms. It can be shown that there exist solutions of the form hµν = Aµν exp(ikρx

ρ), where Aµν

are constants and have only two independent components due to freedom in coordinate transfor-
mation. The two degrees of freedom correspond to two polarisations of the wave (see Figure 3),
and any general plane wave can be represented as a linear combination of the two.
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4.2 Numerical results and detection of GWs

Figure 4: Gravitational waveform extraction at r = 225M obtained by Scheel et al. [36].
The left subfigure shows the overall waveform, while the right subfigure focuses on the merger
and the ringdown stages. The pulse at around t = 200M is the ‘junk radiation’ (caused by
imperfect initial data not being exactly in equilibrium).

Following the breakthroughs in 2005, many more BBH simulations have been carried out. Fig-
ure 4 shows a typical waveform extracted at a distant point obtained by Scheel et al. [36] in
2009. The overall form of radiation, especially that of the last two stages, is a signature of the
BBH coalescence. Looking for this signature is the key in wave-detection stations such as LIGO,
Virgo and LISA.

Figure 5: GW signals observed by LIGO Hanford (left column panels) and Livingston (right
column panels) detectors. Figure taken from [37].

The expected waveform was finally detected by LIGO on 14 September, 2015 and announced
on 11 February, 2016 (see Figure 5). This monumental event, which occurred a century after
Einstein published the paper on GR, gave the first direct test of the strong-field regime of the
theory, and at the same time demonstrated the importance of NR.

4.3 Further remarks

Although other compact binary mergers (i.e. a BH and a neutron star or double neutron stars)
are much weaker sources of GW, it is highly likely that signals emitted by them will be detected
in the near future. Soon after the first GW detection, Belczynski et al. [38] showed that an
increase of ∼2.5 in the instrument sensitivity should allow the detection of GW emitted from
them. Currently, the instrument at LIGO/Virgo is being upgraded and is expected to reach its
target sensitivity in 2019, which is more than 2.5 times the current sensitivity [38].
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The direct detection of GWs has undoubtedly started a new era in observational astronomy.
However, the astronomical environment (e.g. medium density) of the BBH cannot be determined
solely from the GW signals as a result of the large sky localisation uncertainties (∼600 square
degrees for the first event) [37, 39]. Thus, electromagnetic signals are also needed. For example,
for neutron star merging with a BH, as a result of large tidal torques, energy and angular
momentum are removed on a small time scale, after which the decompression could lead to
synthesis of radioactive elements through the r-process [40, 41]; its radioactive decay could then
give rise to an optical transient [42] (see [39] for a discussion of its detectability). Knowing the
environment around the merger is pivotal since the initial conditions that should be used in the
numerical simulations depend on this information.

5 Conclusions

Since the 1960’s, considerable progress has been made in the numerical community. The suc-
cessful simulations of BBH coalescence in 2005 have been a watershed in the history of NR.
The concepts of 3+1 space-time split, the ADM equations, and the BSSN formulation all played
important roles in the development of NR leading to the moving puncture breakthrough and con-
tinue to be used today. The gravitational waveforms predicted from the numerics was observed
experimentally in 2015, which established the validity of GR in the strong-field regime.
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